电磁流体力学(电磁流体力学方程)

频道:电子元器件 日期: 浏览:436

电磁流体力学

本文内容来自于互联网,分享电磁流体力学(电磁流体力学方程)

电磁流体力学-概述

主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。

电磁流体力学-发展简史

流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。古时中国有大禹治水疏通江河的传说;秦朝李冰父子带领劳动人民修建的都江堰,至今还在发挥着作用;大约与此同时,古罗马人建成了大规模的供水管道系统等等。

  

对流体力学学科的形成作出第一个贡献的是古希腊的阿基米德,他建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。

  

直到15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。

  

17世纪,力学奠基人牛顿研究了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。

  

之后,法国皮托发明了测量流速的皮托管;达朗贝尔对运河中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。

  

电磁流体力学(电磁流体力学方程)

欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。法国拉格朗日对于无旋运动,德国赫尔姆霍兹对于涡旋运动作了不少研究……。在上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘流体。这种理论当然阐明不了流体中粘性的效应。

  

19世纪,工程师们为了解决许多工程问题,尤其是要解决带有粘性影响的问题。于是他们部分地运用流体力学,部分地采用归纳实验结果的半经验公式进行研究,这就形成了水力学,至今它仍与流体力学并行地发展。1822年,纳维建立了粘性流体的基本运动方程;1845年,斯托克斯又以更合理的基础导出了这个方程,并将其所涉及的宏观力学基本概念论证得令人信服。这组方程就是沿用至今的纳维-斯托克斯方程(简称N-S方程),它是流体动力学的理论基础。上面说到的欧拉方程正是N-S方程在粘度为零时的特例。

  

普朗特学派从1904年到1921年逐步将N-S方程作了简化,从推理、数学论证和实验测量等各个角度,建立了边界层理论,能实际计算简单情形下,边界层内流动状态和流体同固体间的粘性力。同时普朗克又提出了许多新概念,并广泛地应用到飞机和汽轮机的设计中去。这一理论既明确了理想流体的适用范围,又能计算物体运动时遇到的摩擦阻力。使上述两种情况得到了统一。

  

20世纪初,飞机的出现极大地促进了空气动力学的发展。航空事业的发展,期望能够揭示飞行器周围的压力分布、飞行器的受力状况和阻力等问题,这就促进了流体力学在实验和理论分析方面的发展。20世纪初,以儒科夫斯基、恰普雷金、普朗克等为代表的科学家,开创了以无粘不可压缩流体位势流理论为基础的机翼理论,阐明了机翼怎样会受到举力,从而空气能把很重的飞机托上天空。机翼理论的正确性,使人们重新认识无粘流体的理论,肯定了它指导工程设计的重大意义。

  

机翼理论和边界层理论的建立和发展是流体力学的一次重大进展,它使无粘流体理论同粘性流体的边界层理论很好地结合起来。随着汽轮机的完善和飞机飞行速度提高到每秒50米以上,又迅速扩展了从19世纪就开始的,对空气密度变化效应的实验和理论研究,为高速飞行提供了理论指导。20世纪40年代以后,由于喷气推进和火箭技术的应用,飞行器速度超过声速,进而实现了航天飞行,使气体高速流动的研究进展迅速,形成了气体动力学、物理-化学流体动力学等分支学科。

  

以这些理论为基础,20世纪40年代,关于炸药或天然气等介质中发生的爆轰波又形成了新的理论,为研究原子弹、炸药等起爆后,激波在空气或水中的传播,发展了爆炸波理论。此后,流体力学又发展了许多分支,如高超声速空气动力学、超音速空气动力学、稀薄空气动力学、电磁流体力学、计算流体力学、两相(气液或气固)流等等。

  

这些巨大进展是和采用各种数学分析方法和建立大型、精密的实验设备和仪器等研究手段分不开的。从50年代起,电子计算机不断完善,使原来用分析方法难以进行研究的课题,可以用数值计算方法来进行,出现了计算流体力学这一新的分支学科。与此同时,由于民用和军用生产的需要,液体动力学等学科也有很大进展。

  

20世纪60年代,根据结构力学和固体力学的需要,出现了计算弹性力学问题的有限元法。经过十多年的发展,有限元分析这项新的计算方法又开始在流体力学中应用,尤其是在低速流和流体边界形状甚为复杂问题中,优越性更加显著。近年来又开始了用有限元方法研究高速流的问题,也出现了有限元方法和差分方法的互相渗透和融合。

  

从20世纪60年代起,流体力学开始了流体力学和其他学科的互相交叉渗透,形成新的交叉学科或边缘学科,如物理-化学流体动力学、磁流体力学等;原来基本上只是定性地描述的问题,逐步得到定量的研究,生物流变学就是一个例子。

电磁流体力学-研究方法

进行流体力学的研究可以分为现场观测、实验室模拟、理论分析、数值计算四个方面:

  

现场观测是对自然界固有的流动现象或已有工程的全尺寸流动现象,利用各种仪器进行系统观测,从而总结出流体运动的规律,并借以预测流动现象的演变。过去对天气的观测和预报,基本上就是这样进行的。

  

不过现场流动现象的发生往往不能控制,发生条件几乎不可能完全重复出现,影响到对流动现象和规律的研究;现场观测还要花费大量物力、财力和人力。因此,人们建立实验室,使这些现象能在可以控制的条件下出现,以便于观察和研究。

  

同物理学、化学等学科一样,流体力学离不开实验,尤其是对新的流体运动现象的研究。实验能显示运动特点及其主要趋势,有助于形成概念,检验理论的正确性。二百年来流体力学发展史中每一项重大进展都离不开实验。

  

模型实验在流体力学中占有重要地位。这里所说的模型是指根据理论指导,把研究对象的尺度改变(放大或缩小)以便能安排实验。有些流动现象难于靠理论计算解决,有的则不可能做原型实验(成本太高或规模太大)。这时,根据模型实验所得的数据可以用像换算单位制那样的简单算法求出原型的数据。

  

现场观测常常是对已有事物、已有工程的观测,而实验室模拟却可以对还没有出现的事物、没有发生的现象(如待设计的工程、机械等)进行观察,使之得到改进。因此,实验室模拟是研究流体力学的重要方法。

  

理论分析是根据流体运动的普遍规律如质量守恒、动量守恒、能量守恒等,利用数学分析的手段,研究流体的运动,解释已知的现象,预测可能发生的结果。理论分析的步骤大致如下:

  

首先是建立“力学模型”,即针对实际流体的力学问题,分析其中的各种矛盾并抓住主要方面,对问题进行简化而建立反映问题本质的“力学模型”。流体力学中最常用的基本模型有:连续介质、牛顿流体、不可压缩流体、理想流体、平面流动等。

  

其次是针对流体运动的特点,用数学语言将质量守恒、动量守恒、能量守恒等定律表达出来,从而得到连续性方程、动量方程和能量方程。此外,还要加上某些联系流动参量的关系式(例如状态方程),或者其他方程。这些方程合在一起称为流体力学基本方程组。

  

求出方程组的解后,结合具体流动,解释这些解的物理含义和流动机理。通常还要将这些理论结果同实验结果进行比较,以确定所得解的准确程度和力学模型的适用范围。

  

从基本概念到基本方程的一系列定量研究,都涉及到很深的数学问题,所以流体力学的发展是以数学的发展为前提。反过来,那些经过了实验和工程实践考验过的流体力学理论,又检验和丰富了数学理论,它所提出的一些未解决的难题,也是进行数学研究、发展数学理论的好课题。按目前数学发展的水平看,有不少题目将是在今后几十年以内难于从纯数学角度完善解决的。

  

在流体力学理论中,用简化流体物理性质的方法建立特定的流体的理论模型,用减少自变量和减少未知函数等方法来简化数学问题,在一定的范围是成功的,并解决了许多实际问题。

  

对于一个特定领域,考虑具体的物理性质和运动的具体环境后,抓住主要因素忽略次要因素进行抽象化也同时是简化,建立特定的力学理论模型,便可以克服数学上的困难,进一步深入地研究流体的平衡和运动性质。

  

20世纪50年代开始,在设计携带人造卫星上天的火箭发动机时,配合实验所做的理论研究,正是依靠一维定常流的引入和简化,才能及时得到指导设计的流体力学结论。

  

此外,流体力学中还经常用各种小扰动的简化,使微分方程和边界条件从非线性的变成线性的。声学是流体力学中采用小扰动方法而取得重大成就的最早学科。声学中的所谓小扰动,就是指声音在流体中传播时,流体的状态(压力、密度、流体质点速度)同声音未传到时的差别很小。线性化水波理论、薄机翼理论等虽然由于简化而有些粗略,但都是比较好地采用了小扰动方法的例子。

  

每种合理的简化都有其力学成果,但也总有其局限性。例如,忽略了密度的变化就不能讨论声音的传播;忽略了粘性就不能讨论与它有关的阻力和某些其他效应。掌握合理的简化方法,正确解释简化后得出的规律或结论,全面并充分认识简化模型的适用范围,正确估计它带来的同实际的偏离,正是流体力学理论工作和实验工作的精华。

  

流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。

  

数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了“计算流体力学”。

  

从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。

  

解决流体力学问题时,现场观测、实验室模拟、理论分析和数值计算几方面是相辅相成的。实验需要理论指导,才能从分散的、表面上无联系的现象和实验数据中得出规律性的结论。反之,理论分析和数值计算也要依靠现场观测和实验室模拟给出物理图案或数据,以建立流动的力学模型和数学模式;最后,还须依靠实验来检验这些模型和模式的完善程度。此外,实际流动往往异常复杂(例如湍流),理论分析和数值计算会遇到巨大的数学和计算方面的困难,得不到具体结果,只能通过现场观测和实验室模拟进行研究。

电磁流体力学-展望

从阿基米德到现在的二千多年,特别是从20世纪以来,流体力学已发展成为基础科学体系的一部分,同时又在工业、农业、交通运输、天文学、地学、生物学、医学等方面得到广泛应用。

电磁流体力学(电磁流体力学方程)

  

今后,人们一方面将根据工程技术方面的需要进行流体力学应用性的研究,另一方面将更深入地开展基础研究以探求流体的复杂流动规律和机理。后一方面主要包括:通过湍流的理论和实验研究,了解其结构并建立计算模式;多相流动;流体和结构物的相互作用;边界层流动和分离;生物地学和环境流体流动等问题;有关各种实验设备和仪器等。